Prov-GigaPath是一个用于数字病理学研究的全切片基础模型,它通过真实世界数据进行训练,旨在支持AI研究人员在病理学基础模型和数字病理幻灯片数据编码方面的研究。该模型由多位作者共同开发,并在Nature期刊上发表。它不适用于临床护理或任何临床决策制定目的,仅限于研究使用。
需求人群:
"目标受众为AI研究人员和数字病理学领域的学者,他们需要一个强大的模型来分析和理解大量的病理学数据,以推动医学研究和诊断技术的发展。"
使用场景示例:
研究人员使用Prov-GigaPath模型分析病理学数据,发表在Nature期刊上。
医学院校利用该模型进行教学和研究,提高学生对数字病理学的理解。
医院研究人员使用该模型进行病理幻灯片的自动化分析,加快研究进程。
浏览量:9