SC-GS是一种新型表示技术,将动态场景的运动和外观分别用稀疏控制点和密集高斯函数表示。它使用少量控制点学习紧凑的6自由度变换基,这些基可通过插值权重在局部插值,得到3D高斯函数的运动场。它采用变形MLP预测每个控制点的时变6自由度变换,降低学习复杂度,增强学习能力,实现时空连贯的运动模式。同时联合学习3D高斯函数、控制点的规范空间位置和变形MLP,重建3D场景的外观、几何和动态。在训练过程中,控制点的位置和数量会自适应调整以适应不同区域的运动复杂度,并采用尽可能刚性的损失函数强制运动的空间连续性和局部刚性。由于运动表示的显式稀疏性和外观分离,该方法实现了用户控制的运动编辑,同时保留高保真度外观。大量实验表明,该方法在新视图合成和高速渲染方面优于现有方法,并支持新的保留外观的运动编辑应用。
需求人群:
"新视图合成、高保真动画生成、特效制作、运动补全、虚拟现实等"
使用场景示例:
影视特效制作中的动态场景渲染
虚拟现实/增强现实应用中的真实场景建模和交互
通过编辑控制网格来修改3D动画运动序列
浏览量:9